Abstract
In [KSb] we studied the following model for the spread of a rumor or infection: There is a “gas” of so-called A-particles, each of which performs a
continuous time simple random walk onZd, with jump rate DA. We assume
that “just before the start” the number ofA-particles at x, NA(x,0ư), has a
meanàAPoisson distribution and that theNA(x,0ư),x∈Zd, are independent. In addition,
there areB-particles which perform continuous time simple
random walks with jump rateDB. We start with a finite number ofB-particles
in the system at time 0. The positions of these initialB-particles are arbitrary,
but they are nonrandom. TheB-particles move independently of each other.
The only interaction occurs when aB-particle and anA-particle coincide; the
latter instantaneously turns into aB-particle. [KSb] gave some basic estimates
for the growth of the set B(t):={x∈Zd:aB-particle visits xduring [0,t]}.
In this article we show that ifDA=DB, then B(t):= B(t)+[ư12,12]d grows
linearly in time with an asymptotic shape, i.e., there exists a nonrandom set
B0such that (1/t)B(t)→B0, in a sense which will be made precise.
Xem Thêm: A shape theorem for the spread of an infectionNội dung trên chỉ thể hiện một phần hoặc nhiều phần trích dẫn. Để có thể xem đầy đủ, chi tiết và đúng định dạng tài liệu, bạn vui lòng tải tài liệu. Hy vọng tài liệu A shape theorem for the spread of an infection sẽ giúp ích cho bạn.
-
A shape theorem for the spread of an infection
TIẾN SĨ A shape theorem for the spread of an infection
Vui lòng Tải xuống để xem tài liệu đầy đủ.
Gửi bình luận
♥ Tải tài liệu