Tìm kiếm
Đang tải khung tìm kiếm
Kết quả 1 đến 1 của 1

    THẠC SĨ Nghiên cứu ứng dụng khai phá dữ liệu vào công tác quản lý nguồn nhân lực và ứng dụng quản lý hồ sơ dữ liệu tại Tổng cục Hải Quan

    Bống Hà Bống Hà Đang Ngoại tuyến (5424 tài liệu)
    .:: Bronze Member ::.
  1. Gửi tài liệu
  2. Bình luận
  3. Chia sẻ
  4. Thông tin
  5. Công cụ
  6. Nghiên cứu ứng dụng khai phá dữ liệu vào công tác quản lý nguồn nhân lực và ứng dụng quản lý hồ sơ dữ liệu tại Tổng cục Hải Quan

    MỞ ĐẦU

    Quản lý cán bộ là mảng công tác quan trọng phối hợp một cách tổng thể các hoạt động hoạch định, tuyển mộ, tuyển chọn, duy trì, phát triển, động viên

    và tạo điều kiện thuận lợi cho tài nguyên nhân sự trong tổ chức, nhằm đạt được mục tiêu chiến lược và định hướng viễn cảnh của tổ chức. Một số công tác cán bộ điển hình là tổ chức, sắp xếp cán bộ, đánh giá cán bộ, quy hoạch cán bộ, lựa chọn cán bộ, bồi dưỡng quản lý, hoạch định mô hình tổ chức . [4], trong đó, công tác đánh giá hồ sơ cán bộ là công tác đầu tiên quan trọng xuyên xuốt trong công tác cán bộ. Chỉ khi có đánh giá đúng cán bộ thì mới có thể sắp xếp đúng và người cán bộ có điều kiện phát huy được hết khả năng. về phía người quản lý cán bộ thì họ cần đưa ra những quyết định đúng: lựa chọn đúng để đào tạo, để đề bạt, bổ nhiệm. Công tác quản lý hồ sơ cán bộ phổ biến là quản lý theo mô hình thủ công; đánh giá cán bộ dựa vào cảm tính và tự đánh giá của cá nhân để xem xét đã phát sinh nhiều tiêu cực làm suy giảm sức mạnh của bộ máy quản lý. Từ thực trạng đó, lộ trình tin học hóa dữ liệu nhân sự đã được tiến hành theo hướng số hóa hồ sơ nhân sự để xây dựng ứng dụng khai thác dữ liệu nhanh chóng hiệu quả phục vụ cho công tác nghiệp vụ.

    Trong quá trình quản lý, cập nhật, bổ sung, thay đổi thông tin trong hồ sơ thì dữ liệu được tích lũy đã tăng trưởng ngày càng nhiều, và có thể chứa nhiều thông tin ẩn dạng những quy luật chưa được khám phá. Dữ liệu nhân sự là một cơ sở dữ liệu có nhiều thông tin cần quản lý, với mỗi trường hợp có nhiều thuộc tính (Biểu mẫu 2C/TCTW-98 hồ sơ cán bộ Bộ nội vụ đã quy định thông tin quản lý gồm S1 thuộc tính) và đặc tính phải phân loại đánh giá một trường hợp dựa trên các thuộc tính. Chính vì vậy, kho dữ liệu nhân sự hình thành đặt ra nhu cầu cần tìm cách trích rút ra các luật trong dữ liệu hay dự đoán những xu hướng mới của dữ liệu tương lai. Yêu cầu phương pháp khai thác kho dữ liệu này một cách khoa học hiệu quả và thuận tiện để có cơ sở thông tin hỗ trợ công tác quản lý nguồn nhân lực, đánh giá một con người cụ thể từ những thông tin đã được lưu trữ.

    J. Han và M. Kamber [ó] đã trình bày quá trình tiến hóa của lĩnh vực công nghệ cơ sở dữ liệu, mà trong đó, công nghệ khai phá dữ liệu (Data Mining) đã trở thành dạng tiến hóa mới của công nghệ cơ sở dữ liệu. Một quan niệm khác về công nghệ khai phá dữ liệu của Fayyad, Piatetsky-Shapiro là việc nghiên cứu phát triển lĩnh vực khai phá dữ liệu nhằm giải quyết tình trạng “ngập tràn thông tin mà thiếu thốn tri thức”. Khai phá dữ liệu có nhiều ứng dụng là một phương

    pháp đơn vị Able Danger của Quân đội Mỹ đã dùng để xác định kẻ đứng đầu cuộc tấn công ngày 11/9, Mohamed Atta, và ba kẻ tấn công ngày 11/9 khác là các thành viên bị nghi ngờ thuộc lực lượng al Qaeda hoạt động ở Mỹ hơn một năm trước cuộc tấn công [l]. Đối với dữ liệu nhân sự, khi cập nhật một hồ sơ nhân sự mới vào cơ sở dữ liệu thì việc phân lớp nhân sự đó một cách tự động thực sự có ý nghĩa hỗ trợ cho việc đánh giá ban đầu. Những nghiên cứu công nghệ thông tin và những sản phẩm phần mềm về quản lý nhân sự, quản lý nguồn nhân lực hiện có mới chỉ đạt được mức độ thu thập hồ sơ lý lịch cán bộ và in ra các biểu mẫu báo cáo phục vụ quản lý, chưa có sản phẩm nào áp dụng kỹ thuật để phát hiện những thông tin tiếm ẩn trong dữ liệu nhân sự. Minh chứng cho việc này có thể kể đến một loạt các sản phẩm quản lý hồ sơ nhân sự như chương trình “Quản lý cán bộ phiên bản 4.0” của công ty sản xuất công nghệ phần mềm CSE, sản phẩm đã được sử dụng Hệ quản trị Oracle phiên bản 9i để cập nhật, quản lý hồ sơ nhân sự của Bộ Nội vụ, Bộ Tài chính và các cơ quan trực thuộc Bộ Tài chính trong đó có Tổng cục Hải quan. Vì vậy, việc nghiên cứu các giải pháp khai thác các thông tin tiềm ẩn trong các kho dữ liệu nhân sự là hết sức cần thiết.

    Luận văn nghiên cứu tổng quan về đặc tính công nghệ khai phá dữ liệu, các kỹ thuật khai phá dữ liệu (phân cụm, phân lớp ), các phần mềm thông dụng khai phá dữ liệu và giải pháp phân lớp dựa trên cây quyết định.
    Luận văn tập trung vào thuật toán tiêu biểu ứng dụng cho phạm vi phân tích dữ liệu là “Microsoft Decision Tree”, sử dụng công cụ phân tích dữ liệu của Microsoft. Đây là công cụ rất thuận tiện trong việc kết nối với cơ sở dữ liệu nhân sự dùng phần mềm Hệ quản trị SQL Server của Microsoft, công cụ có khả năng phân tích trực tuyến qua mạng (có quyền truy cập hợp pháp có thể phân tích từ bất kỳ máy tính nào có trong mạng) và là một công cụ mạnh khai thác nhanh đáp ứng được phân tích theo mô hình tăng trưởng dữ liệu. Ta biết rằng các tập dữ liệu được bổ sung và tăng trưởng theo thời gian, do vậy các tập thường xuyên và các luật kết hợp đã được tính toán không còn giá trị trên tập dữ liệu mới. Ngoài ra, với một dữ liệu ổn định, khi cần tìm các tập thường xuyên với độ hỗ trợ khác, công việc phải tính lại từ đầu.

    Luận văn đã chạy thực nghiệm trên bộ dữ liệu nhân sự thử nghiệm tại Tổng cục Hải quan (việc sử dụng dữ liệu này chấp hành đúng quy tắc bảo quản thông tin hồ sơ cán bộ). Dữ liệu đầu vào của bài toán là cơ sở dữ liệu thử nghiệm hồ sơ lý lịch của 6918 nhân sự. Kết quả đầu ra là mô hình phân lớp và đặc tính hỗ trợ của mô hình trong công tác quản lý nguồn nhân lực. Quá trình chạy thử nghiệm đã thu được các mô hình phân lớp trực quan với kết quả khích lệ. Trên cơ sở đó, luận văn đề xuất những cải tiến để hoàn thiện quan điểm quản lý nguồn nhân lực của ngành Hải quan và cấu trúc tổng thể cho hệ thống ứng dụng quản lý nguồn nhân lực. Phương pháp của luận văn đã nêu ra một hướng đi mới trong phân tích số liệu khác không chỉ phục vụ cho công tác thống kê nhà nước về hải quan mà còn phục vụ cho việc hình thành hệ hỗ trợ ra quyết định trong tương lai.

    Bài toán phân lớp dữ liệu nhân sự để hỗ trợ quyết định đánh giá cán bộ nhằm khám phá được những đặc tính ẩn là rất có ý nghĩa. Đây là hướng giải pháp có hiệu quả cho việc phân tích thông tin phục vụ cho công tác đánh giá nhân sự nói riêng và công tác quản lý nguồn nhân lực nói chung.

    Phạm vi nội dung nghiên cứu của đề tài:

    Sử dụng phân lớp dữ liệu dựa trên cây quyết định để xây dựng các mô hình phân lớp hỗ trợ việc thực hiện các công việc quản lý nguồn nhân lực: giám sát công việc của nhân viên, hoạch định mô hình tổ chức, theo dõi giám sát số liệu của hồ sơ, hỗ trợ việc ra quyết định lựa chọn cán bộ tham gia chương trình đào tạo.

    Luận văn gồm có 4 chương chính:

    Chương 1: Tổng quan đề cập tới bối cảnh thực tiễn định hình hướng

    nghiên cứu của luận văn.

    Chương 2: Yêu cầu và nghiên cứu các kỹ thuật, công cụ liên quan để chọn kỹ thuật, công cụ sử dụng.

    Chương 3: Luận văn đi sâu vào nghiên cứu kỹ thuật phân lớp dựa trên cây quyết định.

    Chương 4: Thực nghiệm trên bộ dữ liệu nhân sự và đưa ra kết quả minh họa cho phương pháp.

    Kết luận định hướng phát triển kết quả nghiên cứu.


    Xem Thêm: Nghiên cứu ứng dụng khai phá dữ liệu vào công tác quản lý nguồn nhân lực và ứng dụng quản lý hồ sơ dữ liệu tại Tổng cục Hải Quan
    Nội dung trên chỉ thể hiện một phần hoặc nhiều phần trích dẫn. Để có thể xem đầy đủ, chi tiết và đúng định dạng tài liệu, bạn vui lòng tải tài liệu. Hy vọng tài liệu Nghiên cứu ứng dụng khai phá dữ liệu vào công tác quản lý nguồn nhân lực và ứng dụng quản lý hồ sơ dữ liệu tại Tổng cục Hải Quan sẽ giúp ích cho bạn.
    #1
  7. Đang tải dữ liệu...

    Chia sẻ link hay nhận ngay tiền thưởng
    Vui lòng Tải xuống để xem tài liệu đầy đủ.

    Gửi bình luận

    ♥ Tải tài liệu

social Thư Viện Tài Liệu

Từ khóa được tìm kiếm

Nobody landed on this page from a search engine, yet!

Quyền viết bài

  • Bạn Không thể gửi Chủ đề mới
  • Bạn Không thể Gửi trả lời
  • Bạn Không thể Gửi file đính kèm
  • Bạn Không thể Sửa bài viết của mình
  •  
DMCA.com Protection Status